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Abstract. There is weak bulk but strong surface coupling between electrons and phonons in
a semi-infinite crystal. Here some properties of the surface polaron in a semi-infinite crystal,
weak coupling with bulk longitudinal optical (BO) phonons and strong coupling with surface
longitudinal optical (SO) phonons, are studied. The effective Hamiltonian of a slow-moving
surface polaron in a semi-infinite crystal is derived using an improved linear combination
operator and perturbation method. If we consider the interaction between phonons of different
wave vectors in the recoil process, the influence of this interaction on the effective Hamiltonian,
the induced potential and the effective mass of the surface polaron are discussed. Numerical
calculations for an AgBr crystal, as an example, are performed, and some properties of the
surface polaron in a semi-infinite crystal are discussed.

1. Introduction

In the early 1970s, Ibach [1] carried out low-energy electron diffraction (LEED) experiments
on ZnO and other semiconductor surfaces. The surface or interface polarons in the crystals
are of considerable interest. The behaviour of the electron–phonon interaction near the
surface or interface of a crystal has been studied by many investigators [2–4]. Evans and
Mills [5], using a variational approach, investigated the case where the electron interacted
with both surface and bulk LO waves and the phonons were considered as the only electric-
dipole active excitations. Guet al [6, 7] discussed the ideal surface polaron and the weak,
intermediate-coupling polaron in a semi-infinite polar crystal by means of the perturbation
method.

Huybrechts [8] proposed a linear combination operator method, by which a strong-
coupling polaron was investigated. Later, other authors [9–11] studied many aspects of
the strong-coupling polaron by this method. On the basis of Huybrechts’ work, Tokuda
[12] added another variational parameter to the momentum operator and also evaluated the
ground-state energy and effective mass of the bulk polaron. In fact, so far research on the
polaron has been restricted to approximation and calculation where the interaction between
phonons of different wave vectors in the recoil process is neglected. The properties of
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the surface polaron, considering the corresponding interaction, have been discussed by the
perturbation method by the present authors and co-workers [13].

For the bulk polaron, the weak- and intermediate-coupling theories are applicable for
the electron–bulk longitudinal optical phonon coupling constantαl < 6 [14], whereas for
the surface polaron this confinement is about 2.5 [3]. Hence, when the electron–surface
optical phonon coupling constant satisfiesαs > 2.5, the strong-coupling theory must be
applied. There is weak coupling between the electron and the bulk longitudinal optical
phonon, but strong coupling between the electron and the surface optical phonon for many
polar crystals. So far, research into this has been very scarce.

In this paper, the effect of the interaction between phonons of different wave vectors
in the recoil process on the properties of the surface polaron in a semi-infinite crystal are
studied by using an improved linear combination operator and perturbation method. With
both the weak coupling between the electron and bulk LO phonon and the strong coupling
between the electron and SO phonon included, we obtain an expression for the effective
Hamiltonian of the surface polaron. If we consider the interaction between phonons of
different wave vectors in the recoil process, the influence on the effective Hamiltonian,
induced potential, effective interaction potential and effective mass of the surface polaron
are investigated. Numerical calculations, taking the AgBr crystal example, are performed
and the properties of these quantities for the surface polaron in a semi-infinite crystal are
discussed.

2. Hamiltonian

A surface between an AgBr crystal and vacuum is perpendicular to thez axis; the semi-
infinite spacez > 0 is occupied by the AgBr crystal, whereas the spacez < 0 is a vacuum.
We consider a slow electron moving in an AgBr crystal which occupies the half spacez > 0.
Using the Hamiltonian of the interaction between an electron and SO phonons and bulk LO
phonons that has been given by Evans and Mills [5], including the surface repulsive image
potential with dielectric constantε∞(6=1) from the polarization of the electron cloud, the
Hamiltonian of the electron–phonon system in explicit form can be written as (¯h = m = 1;
m is the band mass of the electron)

H = P 2
‖

2
+ P

2
z

2
+ e2(ε∞ − 1)

4zε∞(ε∞ + 1)
+
∑
W

ωla
+
W aW +

∑
Q

ωsb
+
QbQ

+
∑
W

sin(wzz)(V
∗
W e−iW‖·ρa+W + HC)+

∑
Q

e−QZ(V ∗Q e−iQ·ρ b+Q + HC) (1a)
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(
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ε∗S

)1
2
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− 1

ε0
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1
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= ε0− 1

ε0+ 1
= ε∞ − 1

ε∞ + 1
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In (1a), a+W (aW ) is the creation (annihilation) operator of a bulk LO phonon with
three-dimensional wave vectorW , b+Q(bQ) is the corresponding operator for the SO phonon
with two-dimensional wave vectorQ. P‖ andρ are the momentum and position vector,
respectively, of an electron in a plane parallel to the surface.Pz andz are the momentum
and position, respectively, of the electron in thez direction. ωl andωs are the frequencies
of the bulk LO and SO phonons.S andV are the surface area and the volume of the crystal.
ε0 andε∞ are, respectively, the static and high-frequency dielectric constant of the crystal
(in (1a) the subscript‖ denotes the projection of a given vector onto a plane parallel to the
surface).

The Hamiltonian can formally be divided into two parts:

H = Hz +H‖ (2a)

where

Hz =
P 2
z

2
+ e2(ε∞ − 1)

4zε∞(ε∞ + 1)
(2b)

and the rest is calledH‖. Assuming the motion in thez direction to be slow, in determining
the motion state in thex–y plane, the quantities such as the momentum and position in
the z direction may be regarded as parameters. This procedure is exactly analogous to the
quasi-adiabatic approximation [7, 15, 16]. We calculateH‖, then add the calculated result
to Hz so as to obtain the effective Hamiltonian of the system. For the motion parallel to
the x–y plane we introduce unitary transformations to the HamiltonianH‖ with

U1 = exp

(
− i

(∑
W

A1a
+
W aWW‖ +

∑
Q

A2b
+
QbQQ

)
· ρ
)

(3a)

U2 = exp

(∑
W

(a+W fW − aW f ∗W)+
∑
Q

(b+QgQ − bQg∗Q)
)

(3b)

where fW(f ∗W) and gQ(g∗Q) are variational parameters.Ai(i = 1, 2) is a parameter
characterizing the coupling strength. In the unitary transformationU1, Ai = 1 corresponds
to the weak-coupling limit andAi = 0 corresponds to the strong-coupling limit.

Following Tokuda [12] we also introduce the linear combination of the creation operator
b+j and annihilation operatorbj to represent the momentum and position of the electron:

P‖j =
(
λ

2

)1
2

(bj + b+j + P0j ) (4a)

ρj = i

(
1

2λ

)1
2

(bj − b+j ) (4b)

where the subscriptj refers to thex andy directions,λ andP0 are the variational parameters,
and b+j and bj are Boson operators satisfying the Boson commutative relation. Applying
the transformations (3a) and (3b) to the HamiltonianH‖ and using the operator expressions
(4a) and (4b) and the fact that, in the unitary transformationU1, A1 = 1 corresponds to the
weak coupling between the electron and the bulk LO phonon andA2 = 0 corresponds to
the strong coupling between the electron and SO phonon, we can easily obtain
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H‖ = U−1
2 U−1

1 H‖U1U2 = H0
‖ +H′‖ (5a)
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z/4λ)
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1
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j b
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1
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H′‖ =
1

2

∑
W 6=W ′

W‖ ·W ′
‖(a
+
W ′ + f ∗W)(aW + fW)(a+W ′ + f ∗W ′)(aW ′ + fW ′). (5c)

(5c) is the term describing the interaction between phonons of different wave vectors in the
recoil process. The ground-state wavefunction of the system isφ = ϕ(ρ)|0〉 whereϕ(ρ) is
the normalized surface polaron wavefunction.|0〉 is the zero-phonon state, which satisfies

aW |0〉 = bQ|0〉 = bj |0〉 = 0. (6)

In the variation for minimizing the ground-state energy with respect to the variational
parameter and the functions mentioned above, the system must be constrained by the
conservation of total momentum. However, in the quasi-adiabatic approximation, the
momentum in thez direction is regarded as a parameter; so it is only constrained by
the total momentum parallel to thex–y plane;

P‖T = P‖ +
∑
W

W+
‖ a
+
W aW +

∑
Q

Qb+QbQ. (7)

The minimization problem is now carried out by the use of the Lagrange multiplieru; we
have

〈φ|H0
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2 U−1
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F(λ, fW , gQ, u, p0) may be called the variational parameter function. Minimizing (8b) with
respect toλ, fW , gQ, u andp0, we can determine these parameters and functions. Using
the variational method, we obtain

fW = − V ∗W sin(Wzz)

ωl +W 2
‖ /2− ((λ/2)1/2− η)p0 ·W‖

(9a)

gQ = −
e−QzV ∗Q e−(Q

2/4λ)

ωsQ · u
. (9b)

According to the Lee–Low–Pines [17] variation technique, if it is noted that the only
preferred direction in thex–y plane is that ofp0, we may conveniently introduce the
parameter defined by∑

W

|fW |2W‖ = ηp0. (10)

Substituting (9a) into (10), we obtain

η = 2αlf1(z)

1+ 2αlf1(z)

(
λ

2

)1
2

(11a)

f1(z) = π

8
− 2

∫ ∞
0

x2e−2ulzx

(1+ x2)3
dx. (11b)

Substituting (9) into (8b), the final two terms in (8b) can be calculated by replacing the
summation with integration and expanding them up to the second-order term ofu andp0

for a slow electron. In this expression, the first-order terms inp0 ·W‖ andQ ·u are equal
to zero; thus, we have

F(λ, u, p0) = λ

2
+ λ

4
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0 −
(
λ

2
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2
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2
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f 2
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(
λ
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2
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−αsu2

(
λ

ωs

)3
2
∫ ∞

0
x2 e−x
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where

f2(z) = π

2
−
∫ ∞

0

e2ulzx

1+ x2
dx (12b)

αl = e2

εul
αs = e2

ε∗us
(12c)

ul = (2ωl) 1
2 us = (2ωs) 1

2 uλ = (2λ) 1
2 . (12d)

The extremum condition∂F/∂p0 = 0 given by

p0 =
(

2

λ

)1
2 (1+ 2αlf1(z))

2

1+ 3αlf1(z)+ α2
l f

2
1 (z)

u (13a)

〈0|u · p0|0〉 = 2αsu
2

(
λ
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)3
2
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{
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2

1+ 3αlf1(z)+ α2
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2
1 (z)

}
. (13b)
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Finally, the Hamiltonian of the surface polaron in a plane parallel to the surface, which
omits the interaction between phonons of different wave vectors in the recoil process, can
be expressed as

H0
‖ = F(λ, u)− 〈0|u · p0|0〉 = λ

2
+ p2

‖
2m∗
− αlωlf2(z)+ αsωs

(
λ

ωs

)1
2
∫ ∞

0
e−x

2−2uλzx dx

(14a)

where

m∗ = (1+ 2αlf1(z))
2

1+ 3αlf1(z)+ α2
l f

2
1 (z)
+ 2αs

(
λ

ωs

)3
2
∫ ∞

0
x2 e−x

2−2uλzx dx (14b)

is the effective mass of the surface polaron, which omits the corresponding interaction.
Performing the variation ofH0

‖ with respect toλ, we obtain

λ1/2 = αs
√
ωs

∫ ∞
0
(1− 2uλzx) e−x

−2−2uλzx dx. (15)

3. Perturbation calculation

We regardH0
‖ as the unperturbed Hamiltonian of the surface polaron–phonon system, and

H′‖ as the perturbation part in the perturbation calculation. The first-order perturbation
energy induced byH′‖ is zero. Now we are ready to calculate the second-order perturbation
energy,

1E′ = −
∑
n

′ |(H′‖)0n|2
En − E0

= −α2
l ωlf3(z)− u2(1+ 2αlf1(z))

2α2
l

2(1+ 3αlf1(z)+ α2
l f

2
1 (z))

2
(3f4(z)+ f5(z))

(16a)

f3(z) = 1

2

∫ ∞
0

∫ ∞
0

x2y2(1− e−2ulzx)(1− e−2ulzy)

(1+ x2)2(1+ y2)2(2+ x2+ y2)
dx dy (16b)

f4(z) =
∫ ∞

0

∫ ∞
0

x4y2(1− e−2ulzx)(1− e−2ulzy)

(1+ x2)4(1+ y2)2(2+ x2+ y2)
dx dy (16c)

f5(z) =
∫ ∞

0

∫ ∞
0

x4y2(1− e−2ulzx)(1− e−2ulzy)

(1+ x2)2(1+ y2)2(1+ x2+ y2)3
dx dy. (16d)

In (16a), the first term, being proportional to the squared coupling constantα2
l , is the extra

energy of the induced potential of the surface polaron, considering interaction between
phonons of different wave vectors in the recoil process. The second term, being proportional
to the squared coupling constantα2

l , is the extra effective mass of the surface polaron,
considering the corresponding interaction. Finally, the effective Hamiltonian of the surface
polaron can be expressed as

Heff = Hz +H0
‖ +1E′ =

P 2
z

2
+ P 2

‖
2m∗
+ λ

2
+ Vimg + V bi + V si (17a)
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where

Vimg = e2(ε∞ − 1)

4zε∞(ε∞ − 1)
(17b)

V bi = −αlωlf2(z)− α2
l ωlf3(z) (17c)

V si = αsωs
(
λ

ωs

)1
2
∫ ∞

0
e−x

2−2uλzx dx (17d)

m∗ = (1+ 2αlf1(z))
2

1+ 3αlf1(z)+ α2
l f

2
1 (z)

(
1− α2

l (3f4(z)+ f5(z)

1+ 3αlf1(z)+ α2
l f

2
1 (z)

)

+2αs

(
λ

ωs

)3
2
∫ ∞

0
x2 e−x

2−2uλzx dx (17e)

are the image potential, the potential induced by the electron–LO phonon interaction, the
potential induced by the electron–SO phonon interaction and the effective mass of the
surface polaron, respectively. The effective interaction potential of the surface polaron is
defined as

Veff = Vimg + V bi + V si . (17f)

Evidently, the induced potentialV bi , the effective massm∗ and the effective interaction
potentialVeff of the surface polaron depend on the interaction between phonons of different
wave vectors in the recoil process.

4. Results and discussion

To show more obviously the influence of the interaction between phonons of different wave
vectors in the recoil process on the properties of the surface polaron, taking the polaron
in the surface of an AgBr crystal as an example, we perform a numerical evaluation. In
table 1, the data for an AgBr crystal are given.

Table 1. The data for an AgBr crystal. All the parameters are taken from [18].

h̄ωl h̄ωs ul us
Material ε0 ε∞ (meV) (meV) αl αs (cm−1) (cm−1)

AgBr 10.6 4.68 17.1 14.5 1.56 2.56 311.5× 104 286.8× 104

Figure 1 shows the relationships between the image potentialVimg, the induced potential
V b
i resulting from the electron–bulk LO phonon interaction, the induced potentialV si

resulting from the electron–SO phonon interaction, and the effective interaction potential
Veff of the surface polaron in the AgBr crystal, considering the corresponding interactions,
and the coordinatez. From figure 1 one can see that the induced potentialV si of the surface
polaron will decrease with increasing coordinatez, whereas the induced potentialV bi of the
surface polaron will increase with increasing coordinatez. Near the surface the electron–SO
phonon interaction is dominant, whereas in the bulk far from the surface the electron–bulk
LO phonon interaction is dominant. Asz→ 0, the first term of (17f ) is dominant, and the
surface polaron will be repulsed away from the surface. Thus the surface polaron cannot
approach infinitely close to the surface; there is no surface polaron in the range near the
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surface (Veff > 0). Because of the similarity to the case of excitons we call the thin
layer the surface-polaron-free surface layer (SPFSL) or the dead layer of surface polarons.
Solving the equation

Veff (z) = 0 (18)

the root is the depth of the SPFSL, which we denote asd (for the AgBr crystal,d = 10.67Å).
This shows that, when the distance between the electron and the surface is much smaller

than the radius of the bulk polaron the effect of the bulk phonons can be neglected, and so
can the effect of the surface phonons when the corresponding distance is much larger than
the corresponding radius.

Figure 1. The relational curves ofVimg , V si , V bi andVeff with coordinatez.

In general, as the distance between the electron and the surface is of the same order of
magnitude as the radius of the bulk polaron, the effects of both the bulk LO and the SO
phonons must be taken into account. In this case the electron moves in a non-local potential
as given by (17a) [7].
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The effective massm∗ of the surface polaron can be expressed as

m∗ = m∗b +m∗s (19a)

where

m∗b =
(1+ 2αlf1(z))

2

1+ 3αlf1(z)+ α2
l f

2
1 (z)
− α

2
l (1+ 2αlf1(z))

2(3f4(z)+ f5(z))

(1+ 3αlf1(z)+ α2
l f

2
1 (z))

2
(19b)

m∗s = 2αs

(
λ

ωs

)3
2
∫ ∞

0
x2 e−x

2−2uλzx dx (19c)

are the effective mass induced by the electron–bulk LO phonon interaction and by the
electron–SO phonon interaction, respectively. Figure 2 gives the relationship between
the effective masses of the surface polaronm∗, m∗b andm∗s in an AgBr crystal with the
coordinatez. From the figure one can see that the effective massm∗b induced by the electron–
bulk LO phonon interaction will increase little with increasing coordinatez, whereas the
effective massm∗s induced by the electron–SO phonon interaction and the effective mass
m∗ of the surface polaron will increase strongly with decreasing coordinatez.

Figure 2. The relational curve ofm∗ with coordinatez in the AgBr crystal.

Since there is weak bulk but strong surface coupling between electrons and phonons
in polar crystals, the interaction between phonons of different wave vectors in the recoil
process influences only the induced potentialV bi and the effective massm∗b resulting from
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the electron–bulk LO phonon interaction. The extra induced potential, considering the
interaction between phonons of different wave vectors in the recoil process, is given by

V bi2 = α2
l ωlf3(z). (20a)

The induced potential, omitting the corresponding interaction, is

V bi1 = α2
l ωlf2(z). (20b)

The ratio ofV bi2 andV bi1 is

11 = V bi2

V bi1
= αl f3(z)

f2(z)
. (20c)

The extra effective mass, considering the corresponding interaction, is given by

m∗b2 =
α2
l (1+ 2αlf1(z))

2(3f4(z)+ f5(z))

(1+ 3αlf1(z)+ α2
l f

2
1 (z))

2
. (21a)

The effective mass, omitting the corresponding interaction, is

m∗b1 =
(1+ 2αlf1(z))

2

1+ 3αlf1(z)+ α2
l f

2
1 (z)

. (21b)

The ratio ofm∗b2 andm∗b1 is

12 = m∗b2

m∗b1

= α2
l (3f4(z)+ f5(z))

(1+ 3αlf1(z)+ α2
l f

2
1 (z))

2
. (21c)

Figure 3. The relational curve of11 and12 with coupling constantαl .

Figure 3 gives a description of the variation of11 and12 with coupling constantαl :
11 and12 increase with increasing coupling constantαl . For example, whenαl = 3 and
6, the ratio of the extra induced potential, considering the corresponding interaction, to
the induced potential, omitting the corresponding interaction, is11 = 4.8% and 9.6%; the
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Figure 4. The relational curve ofV bi1 andV bi with coordinatez for the AgBr crystal.

ratio of the extra effective mass, considering the corresponding interaction, and the effective
mass, omitting the corresponding interaction, is12 = 4.2% and 7.2%.

Figure 4 shows the relationship between the induced potentialV bi1, omitting the
corresponding interaction, and the induced potentialV bi , considering the corresponding
interaction, and the coordinatez. The solid curve denotes the case ofV bi1; the dashed
one represents the case ofV bi . From the figure, one can see that the induced potential
V bi1 and V bi will increase with increasing coordinatez; moreover,V bi will increase more
thanV bi1 with increasing coordinatez. Figure 5 shows the variation of the effective mass
m∗b, considering the corresponding interaction, and the effective massm∗b1, omitting the
corresponding interaction, with the coordinatez. The solid curve denotes the case ofm∗b1;
the dashed one represents the case ofm∗b. It can be seen from figure 5 that the effective
massesm∗b1 andm∗b will decrease with increasing coordinatez; moreover,m∗b will decrease
more thanm∗b1 with increasing coordinatez.

5. Conclusion

Taking into account the interaction of an electron with both the weak-coupling bulk LO
and the strong-coupling SO phonons we use an improved linear combination operator and
perturbation methods to study the influence of the interaction between phonons of different
wave vectors in the recoil process on the properties of the surface polaron in a semi-infinite
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Figure 5. The relational curve ofm∗b1 andm∗b to coordinatez for the AgBr crystal.

crystal. Numerical calculations, taking the AgBr crystal as an example, are performed. The
results show that the influence of the corresponding interaction on the induced potential and
effective mass will increase with increasing coupling constantαl , and the influence on the
induced potential will increase more with increasing coordinatez, and the influence on the
effective mass will decrease more with increasingz.
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